
LongRunMIP is the first collection of millennial-length simulations of complex 

coupled climate models and enables investigations of how these models 

equilibrate in response to radiative perturbations.

LongRunMIP
Motivation and Design for a Large Collection of 

Millennial-Length AOGCM Simulations

Maria rugenstein, Jonah Bloch-Johnson, ayako aBe-ouchi, tiMothy andrews,  
urs Beyerle, long cao, tarun chadha, gokhan danaBasoglu, Jean-louis dufresne,  

lei duan, Marie-alice fouJols, thoMas frölicher, olivier geoffroy, Jonathan gregory, 
reto knutti, chao li, alice Marzocchi, thorsten Mauritsen, Matthew Menary,  

elisaBeth Moyer, larissa nazarenko, david Paynter, david saint-Martin,  
gavin a. schMidt, akitoMo yaMaMoto, and shuting yang

Millennial-length climate model simulations 
are necessary to understand the equilibration 
that occurs in response to external forcings, 

as well as the relationship between transient and 
equilibrated states. Unforced millennial-length sim-
ulations are useful as well, as they allow us to con-
sider long-term internal variability and to analyze 
shorter-term variability with increased statistical 
certainty. Reasons to study these long time scales 
include the following:

• To better understand long-term climate dynam-
ics. Outstanding issues include the time scales of 
ocean circulation response (e.g., Jansen et al. 2018; 
Rind et al. 2018), continental drying trends (e.g., 
Sniderman et al. 2019) or sea level rise (e.g., Bilbao 
et al. 2015; Rugenstein et al. 2016c).

• To help predict the impacts of twentieth- and twen-
ty-first-century emissions on century time scales, 
such as ice sheet stability, deep ocean warming, or 
polar amplification (e.g., Frölicher and Joos 2010; 
Clark et al. 2016; Mauritsen and Pincus 2017), 

which are rarely explicitly simulated using a fully 
coupled climate model.

• To more accurately estimate equilibrium cli-
mate sensitivity (ECS), which is the equilibrium 
response of the surface air temperature to a 
doubling of CO2 due to the “fast” feedbacks such 
as water vapor, lapse rate, clouds, and sea ice but 
excluding Earth system feedbacks such as chang-
es in the carbon cycle, ice sheets, or vegetation. 
While ECS has long been a focus of scientific 
inquiry, substantial uncertainty remains as to 
its value (e.g., Charney et al. 1979; Knutti et al. 
2017).

• To understand the relationship between the 
transient response of the climate and its equili-
bration. Since radiative feedbacks can depend on 
the evolution of the spatial pattern of warming 
(e.g., Senior and Mitchell 2000; Winton et al. 
2010; Armour et al. 2013; Andrews et al. 2015; 
Andrews and Webb 2018) and on the background 
temperature (e.g., Colman and McAvaney 2009; 
Caballero and Huber 2013; Block and Mauritsen 
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2013; Meraner et al. 2013; Bloch-Johnson et al. 
2015), a constant effective sensitivity of the cli-
mate is an inadequate assumption. Several meth-
ods have been proposed to predict the equilibri-
um response from transient simulations given 
a changing global feedback (Held et al. 2010; 
Winton et al. 2010; Armour et al. 2013; Geoffroy 
et al. 2013a,b; Frölicher et al. 2014; Proistosescu 
and Huybers 2017; Saint-Martin et al. 2019), but 
only fully equilibrated climate model simulations 
can serve to test how well these methods predict 
equilibrium conditions.

• To test theories for the relationship between feed-
backs at different time scales (Gregory et al. 2015, 
2016; Zhou et al. 2016; Rugenstein et al. 2016a; 
Armour 2017; Proistosescu and Huybers 2017; 
Ceppi and Gregory 2017; Andrews and Webb 2018; 
Andrews et al. 2018) and to quantify the influence 
of slow, centennial-scale modes on the tempera-
ture evolution of the last century (Armour 2017; 
Proistosescu and Huybers 2017).

• To understand the relevance, time scales, and 
magnitude of the energy imbalances and drifts 
exhibited by climate models (e.g., Hobbs et al. 
2016), with the potential application of decreasing 
the spinup time needed to run these models.

• To understand the relationship between the forced 
response and internal variability. This relation-
ship is currently studied using the time frame 
of one or two centuries, which is not enough to 
robustly quantify the internal variability under 

consideration (e.g., Maher et al. 2018; Lutsko and 
Takahashi 2018), millennial time scales with vary-
ing forcings (e.g., Köhler et al. 2017; Khon et al. 
2018; Rehfeld et al. 2018) or by using expensive 
large ensemble simulations on decadal to centen-
nial time scales (e.g., Deser et al. 2012; Rodgers 
et al. 2015; Maher et al. 2019). Millennial-length 
simulations allow us to differentiate the transient 
response from the equilibrated forced response, 
even for quantities with large internal variability, 
such as precipitation, droughts, or El Niño–South-
ern Oscillation (ENSO), and also the significance 
of a change in internal variability in a transient 
simulation relative to the control simulation (e.g., 
Brown et al. 2017).

• To compare climate model responses and paleo 
proxies, for example, of surface or deep ocean 
temperatures or hydrological conditions on land 
in order to provide an independent way of testing 
climate models (Gebbie and Huybers 2019; Burls 
and Fedorov 2017; Scheff et al. 2017).

With LongRunMIP, we aim to advance knowledge 
in the above mentioned areas, fill a gap in the CMIP 
protocols (Taylor et al. 2012; Eyring et al. 2016), and 
collect published data in one location for easy public 
access.

The goals of LongRunMIP are as follows:

1) to continuously gather existing millennial-length 
simulations (both published and unpublished),
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2) to standardize the collected data (e.g., using the 
same units and sign conventions),

3) to make the data publicly available and easily 
accessible, and

4) to foster an interdisciplinary community of users 
working on millennial-length problems, with 
experts on oceanography, atmospheric dynamics, 
energy balance modeling, ice sheet modeling, and 
paleoclimatology.

The objectives of this paper are as follows:

1) to motivate the data collection strategy,
2) to specify the requirements for LongRunMIP 

contributors,
3) to give an overview of currently submitted simu-

lations and models,
4) to give a sample of some initial analysis on these 

simulations,
5) to show how LongRunMIP relates to the existing 

literature on millennial-length simulations, and
6) to discuss the limitations and opportunities of 

LongRunMIP.

EXPERIMENTAL DESIGN AND DATA 
COLLECTION STRATEGY. LongRunMIP is 
the first and largest compilation of millennial-length 
simulations of complex climate models to date, where 
a “complex climate model” is understood to include 
an atmospheric, sea ice, land, and full-depth ocean 
component, that is, atmosphere–ocean general circu-
lation models (AOGCMs) with a dynamic atmosphere 
and ocean, as opposed to Earth system models of 
intermediate complexity (EMIC), which are often 
used to study millennial-length questions in climate 
science (e.g., Zickfeld et al. 2013; Levermann et al. 
2013). These model simulations include the “fast” 
feedbacks, such as changes in water vapor, lapse rate, 
sea ice, and clouds (Charney et al. 1979), but does not 
include “slow” feedbacks, such as changes in the ice 
sheets. Vegetation is treated differently in the models 
(see “Minimal, optimal, and current contributions” 
section). In the “Discussion and outlook” section 
we discuss the implications and limitations of our 
approach. 

Our goal is to collect as many simulations from 
as many independent models as possible, while 
keeping the archive and data sharing manageable. 
Consequently, we keep our requirements for contri-
butions low.

Simulations and variables. A step increase in atmo-
spheric CO2 concentrations (in the following called 

“step forcing”) is one of the simplest experiments 
for studying a model’s response to forcing and is 
a benchmark simulation in CMIP3, CMIP5, and 
CMIP6 (Meehl et al. 2007; Taylor et al. 2011; Eyring 
et al. 2016). More realistic, gradual forcing sce-
narios have been shown to be representable by the 
step-forcing scenarios and exhibit feedbacks that 
correlate with those computed from step-forcing 
simulations (Good et al. 2013, 2015; Geoffroy and 
Saint-Martin 2014; Colman and Hanson 2016). The 
CMIP3 protocol required a step forcing of doubling 
atmospheric CO2 (here referred to as abrupt2x) 
above preindustrial levels in a slab (i.e., nondynami-
cal) ocean, which for decades has been used to define 
ECS (e.g., Charney et al. 1979; Boer and Yu 2003c; 
Danabasoglu and Gent 2009). The integration time 
scale of these model setups are a couple of decades. 
However, a quadrupling of CO2 (here referred to as 
abrupt4x) above preindustrial levels has a better 
ratio of forced signal to internal variability. Because 
the forced response was assumed to scale linearly 
with increased forcing, the CMIP5 protocol request-
ed an abrupt quadrupling of CO2, now in a fully 
coupled model with a dynamical ocean, requiring 
longer integration time scales. The CMIP6 protocol 
again requests abrupt CO2 quadrupling experiments, 
but encourages also the submission of abrupt CO2 
doublings, to study the relation between different 
forcing levels (Eyring et al. 2016; Good et al. 2016). 
CMIP5 and CMIP6 protocols require the submis-
sion of 150 years of model output. A representative 
response of surface temperature anomalies and top 
of the atmosphere (TOA) radiative imbalance to an 
abrupt4x scenario is shown in Fig. 1. All anomalies 
mentioned in this paper are computed as the dif-
ference of the experiment from the average of the 
control simulation. After the 150 years of CMIP 
protocol length (blue shading) and after 1,000 years 
(the minimum contribution to LongRunMIP, light 
red shading), the surface temperature response of 
the exemplary model shown here has reached 75% 
and 88% of its final value, respectively, while the 
TOA radiation has equilibrated 85% and 93% of 
the forcing, respectively (7.6 W m–2 for this model). 
Thus, the final equilibration is a CPU-intensive 
exercise; the model shown here needs 4,000 years 
to balance the final 0.5 W m–2 (dark red shading).

The set of variables we collect is motivated by 
the interest of the LongRunMIP contributors and 
organizers in ECS, temperature- and time-dependent 
feedbacks, and deep ocean warming. Table 1 lists the 
variable names, units, and temporal and spatial reso-
lution of the requested variables. The naming and sign 
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conventions follow the CMIP5 protocol.1 Given the 
large amount of data involved, we have kept the list of 
requested variables short to allow as many groups as 
possible to participate. For the same reason, we do not 
request the data to be “CMORized,”2 (i.e., written in 
conformance with the CMIP standards). However, we 
do homogenize signs, variable long names, and units, 
and also provide a regridded version of the fields, as 
well as global means.

Minimal, optimal, and current contributions. The min-
imal requirement to contribute to LongRunMIP are 

annual fields of a single simulation of any CO2 forcing 
scenario that has at least 1,000 years of constant forc-
ing, along with a control simulation of any length. The 
complexity of the model should be CMIP5 class and 
include dynamic atmosphere, ocean, and sea ice com-
ponents. An optimal contribution comprises monthly 
fields of fully equilibrated abrupt2x, abrupt4x, and 
abrupt8x simulations and a control simulation of 
several millennia.

Table 2 lists the model characteristics of the cur-
rent contributions. Because the archive is assembled 
from experiments initiated independently for re-
search purposes by multiple modeling groups, there is 
no predefined protocol like for the CMIP simulations. 
The models are diverse in origin and sample the 
CMIP5 range of models well [see discussion on model 
genealogy in Knutti (2010)]. Table 2 lists references 
for each model and publications using (parts of) the 
model output. Most of the current contributions to 
LongRunMIP are extensions of CMIP5 simulations, 
sometimes with updated model versions, while one 
model is an extension of a CMIP3 and another model 
an extension of a CMIP6 contributions (CCSM3 and 
CNRMCM61, respectively).

Many of our current contributions fall short of the 
optimal expectation for equilibrium, because even 
several millennia are insufficient for the deep ocean 
to equilibrate (see discussion around Fig. 4). However, 
a few millennia appear to be enough for the surface 
temperature and TOA radiative imbalance to reach a 
new steady state in most models (see “Sample of model 
output” section), and many questions can be ade-
quately addressed with the current contributions. Our 
approach is to be inclusive, and to leave it to the user to 
determine the degree of equilibration needed for their 
research and to develop criteria for model selection.

Most contributions are step-forcing simulations, 
generally to 2 or 4 times preindustrial CO2 concentra-
tions (in Fig. 2, abrupt2x colored in yellow, abrupt4x 
in orange, abrupt8x in dark red; abrupt2.4x and 
abrupt4.8x in dark and light pink). There are current-
ly three exceptions: 1) Some model simulations have 
gradual increases in CO2 at 1% yr−1 until doubled or 
quadrupled concentrations are reached, after which 
the concentration is kept constant (1pct2x and 1pct4x, 
light and medium red in Fig. 2). 2) One model simu-
lates the 1850–2010 period, after which CO2 increases 
piecewise linearly for 90 years until reaching 2.4 times 
preindustrial values (CCSM3II). 3) Finally, one model 
simulates the historical period and then the CMIP5 
extended representative concentration pathway 8.5 
(including changes in CH4, N2O, CFC11, and CFC12 
in addition to CO2) until year 2300 after which all 

Fig. 1. Global- and annual-mean surface air tempera-
ture (tas in Table 1) anomaly and TOA radiative im-
balance (computed as rsdt − rlut − rsut; see Table 1) 
to a step forcing of quadrupling CO2 as simulated by 
the model CESM104. For CMIP5 and CMIP6, this 
simulation is part of the standard protocol, but only 
150 simulated years are requested (blue shading). We 
collect simulations that extended this experiment for 
at least 850 years (light red shading), ideally until they 
are equilibrated (end of dark red shading).

1 http://cmip-pcmdi.llnl.gov/cmip5/data_description.html
2 https://pcmdi.llnl.gov/CMIP6/Guide/dataUsers.html
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forcing agents are kept constant 
(RCP8.5+, violet in Fig. 2)

For the models that did not 
contribute a millennial-long 
step-forcing simulation, we col-
lect short (typically 150 years) 
step-forcing simulations, gen-
erally from the CMIP5 archive. 
These simulations can be used 
to estimate the effective climate 
sensitivity and to relate transient 
and equilibrium responses (they 
are not mentioned in Table 2 and 
Fig. 2).

Most contributors were able 
to submit all requested variables. 
Some models only stored annual 
output, while for a few models the 
entire model output (including 
many more variables than listed 
in Table 1) is available. In princi-
ple, but with considerable effort, 
additional variables not listed in 
Table 1 could be requested from 
some or all contributors.

Some models are outliers in 
some sense. For example, the 
simulation abrupt4x of FAMOUS 
warms anomalously strongly 
(Figs. 2 and 7) due to a short-
wave cloud effect that is positive 
throughout the simulation and 
longwave clear-sky effect that 
increases anomalously strongly 
(not shown; see Rugenstein et al. 
2019). In principle though, such 
extreme behavior could represent 
possible characteristics of the real 
world (e.g., Bloch-Johnson et al. 
2015; Schneider et al. 2019). Another atypical model is 
EC-EARTH—Parallel Ice Sheet Model (EC-EARTH-
PISM), which is the only model with an interactive 
Greenland ice sheet. This additional component and 
its historical and RCP8.5+ forcing scenario makes it 
harder to compare the simulation to other models 
and attribute changes to one forcing component. This 
model also does not equilibrate but eventually produc-
es a negative TOA imbalance, which probably would 
increase if the simulation was integrated further. We 
encourage similar “problematic” submissions, since 
our focus is on understanding model behavior and the 
large range of model responses (discussed in “Sample 
of model output” section).

In nine models, the vegetation is fixed to prein-
dustrial conditions (ECHAM5, CCSM3, CCSM3II, 
HadCM3L, FAMOUS, MIROC32, ECEARTH, 
GISSE2R, CNRMCM61), while the other seven mod-
els have dynamic vegetation schemes (MPIESM11, 
MPIESM12, CESM104, HadGEM2, GFDLESM2M, 
GFDLCM3, IPSLCM5A).

SAMPLE OF MODEL OUTPUT. Imbalances in 
the control simulation and drift. In principle, the TOA 
radiative imbalance should be zero in a control sim-
ulation. Most models contributing to LongRunMIP 
do not lose or gain energy (Fig. 3). However, some 
models that are equilibrated in the sense that they 

Table 1. Description of collected variables. 2D means spatial resolu-
tion of latitude and longitude, except for msftmyz, where it means 
latitude and depth. 3D means latitude, longitude, and depth. Vari-
able msftmyz is the sum of the eulerian, eddy bolus, and submeso-
scale components. For “so” and “thetao,” there are also February 
and September values available for most models.

Short 
name Long name Unit Resolution

hfls Surface upward latent heat flux W m–2 Monthly, 2D

hfss Surface upward sensible heat flux W m–2 Monthly, 2D

pr Precipitation on atmospheric grid kg m–2 s–1 Monthly, 2D

psl Sea level pressure Pa Monthly, 2D

rlds Surface downwelling longwave radiation W m–2 Monthly, 2D

rlus Surface upwelling longwave radiation W m–2 Monthly, 2D

rlut TOA outgoing longwave radiation W m–2 Monthly, 2D

rlutcs TOA outgoing clear-sky longwave radiation W m–2 Monthly, 2D

rsds Surface downwelling shortwave radiation W m–2 Monthly, 2D

rsdt TOA incident shortwave radiation W m–2 Monthly, 2D

rsus Surface upwelling shortwave radiation W m–2 Monthly, 2D

rsut TOA outgoing shortwave radiation W m–2 Monthly, 2D

rsutcs TOA outgoing clear-sky shortwave radiation W m–2 Monthly, 2D

tas Near-surface air temperature K Monthly, 2D

ts Atmospheric surface temperature K Monthly, 2D

sic Sea ice area fraction % Monthly, 2D

msftmyz Meridional overturning circulation m3 s–1 Annual, 2D

tos Sea surface temperature K Annual, 2D

sos Sea surface salinity psu Annual, 2D

wfo Net water flux into seawater kg m–2 s–1 Annual, 2D

evs Water evaporation kg m–2 s–1 Annual, 2D

pr_ocn Precipitation (rain and snow) on ocean grid kg m–2 s–1 Annual, 2D

tauuo Surface downward wind stress in x direction N m–2 Annual, 2D

tauvo Surface downward wind stress in y direction N m–2 Annual, 2D

so Sea water salinity psu Annual, 3D

thetao Sea water potential temperature K Annual, 3D
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Table 2. Overview of models and contributed simulations. The resolution of the atmosphere and ocean is giv-
en in number of grid points per latitude × longitude, and latitude × longitude × depth, respectively. Models are 
referred to by their short names throughout the manuscript. The “Minimal, optimal, and current contribu-
tions” section describes the forcing levels. References in the last column describe the models and simulations. 
Some simulations are published in their full length, some simulations contributed to LongRunMIP are the 
extensions of simulations discussed in the references, and some simulations are unpublished.

Model  
(short name)

Forcing-level 
short name

Length 
(yr)

Atmosphere 
resolution

Ocean 
resolution

Control 
simulation 

(yr)
Model and simulation 

documentation

CCSM3  
(CCSM3)

abrupt2x 3,000

48 × 96 100 × 116 × 25 1,530
Yeager et al. (2006)
Danabasoglu and Gent (2009)

abrupt4x 2,120

abrupt8x 1,450

CCSM3  
(CCSM3II)

abrupt2.4 3,701

48 × 96 100 × 116 × 25 3,805
Yeager et al. (2006)
Castruccio et al. (2014)

abrupt4.8 3,132

lin2.4 3,990

CESM 1.0.4 
(CESM104)

abrupt2x 2,500

96 × 144 384 × 20 × 60 1,320
Gent et al. (2011)
Danabasoglu et al. (2012)
Rugenstein et al. (2016c)

abrupt4x 5,900

abrupt8x 5,100

CNRM-CM6-1 
(CNRMCM61)

abrupt2x 750
128 × 256 180 × 360 × 75 2,000

Voldoire et al. (2019)
Saint-Martin et al. (2019)abrupt4x 1,850

EC-EARTH-PISM 
(ECEARTH)

historical
1,270 160 × 320 292 × 362 × 42 508

Hazeleger et al. (2012)
Svendsen et al. (2015)RCP8.5+

ECHAM5/MPIOM 
(ECHAM5)

abrupt4x 1,000
48 × 96 101 × 120 × 40 100

Jungclaus et al. (2006)
Li et al. (2013)1pct4x 6,080

FAMOUS  
(FAMOUS)

abrupt2x 3,000
37 × 48 73 × 96 × 20 3,000 Smith et al. (2008)

abrupt4x 3,000

GFDL CM3 
(GFDLCM3)

1pct2x 5,000 90 × 144 200 × 360 × 50 5,200
Donner et al. (2011)  
Paynter et al. (2018)

GFDL-ESM2M 
(GFDLESM2M)

1pct2x 4,500 90 × 144 200 × 360 × 50 1,340
Dunne et al. (2012) 
Paynter et al. (2018)

GISS-E2-R  
(GISSE2R)

abrupt4x 5,000

90 × 144 180 × 288 × 32 5,225

Schmidt et al. (2014),  
Miller et al. (2014), and 
Nazarenko et al. (2015)
Rind et al. (2018)

1pct4x 5,000

HadCM3L  
(HadCM3L)

abrupt2x 1,000

73 × 96 73 × 96 × 20 1,000
Cox et al. (2000)
Cao et al. (2016)

abrupt4x 1,000

abrupt6x 1,000

abrupt8x 1,000

HadGEM2-ES 
(HadGEM2)

abrupt4x 1,328 145 × 192 216 × 360 × 40 239
Collins et al. (2011) 
Andrews et al. (2015)

IPSL-CM5A-LR 
(IPSLCM5ALR)

abrupt4x 1,000 96 × 96 149 × 182 × 31 1,000 Dufresne et al. (2013)

MIROC3.2 
(MIROC32)

1pct2x 2,000
64 × 128 192 × 256 × 44 681

Hasumi and Emori (2004)

1pct4x 2,000
Yamamoto et al. (2015), 
Yoshimori et al. (2016)

MPI-ESM-1.2 
(MPIESM12)

abrupt2x 1,000

96 × 192 220 × 256 × 40 1,237
Mauritsen et al. (2018)
Rohrschneider et al. (2019)

abrupt4x 1,000

abrupt8x 1,000

abrupt16x 1,000

MPI-ESM-1.1 
(MPIESM11)

abrupt4x 4,459 96 × 192 220 × 256 × 40 2,000 Mauritsen et al. (2018)
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Fig. 2. Global- and  annual-mean surface air temperature for control (black) and forced (colors; listed in the top 
right of each panel) simulations. Abrupt2x, abrupt4x, abrupt6x, and abrupt8x means that the CO2 concentra-
tion is doubled, quadrupled, sextupled, and octupled, respectively, as a step forcing branched off the control 
simulation. 1pct2x and 1pct4x mean the CO2 concentration is linearly increased 1% yr−1 until the concentration 
is doubled or quadrupled, respectively. The simulations of ECEARTH and CCSM3II are described in the “Min-
imal, optimal, and current contributions” section. Note the different axis ranges for each model. GFDLCM3 
and CCSM3II are not branched off directly from the control simulation.

show no substantial drift, still have a constant energy 
leakage. For CMIP5 models, imbalances of the same 
order of magnitude (and larger) have been shown 
to be uncorrelated with the forced response (Hobbs 
et al. 2016). If computing atmospheric anomalies, we 
suggest users to take the difference of each time step 
to the time-averaged control simulation imbalance, 
except for CCSM3II and GFDLCM3 for which the dif-
ference to a polynomial fit to the control simulation 
time series seems appropriate (see Fig. 3).

The deep ocean (defined here as depth level 
around 2 km) has an astonishingly small drift in 
the global average in most models (Fig. 4c). While 
the surface ocean time scales closely follow the 
global-mean surface air temperature anomaly, the 
deep ocean takes centuries to equilibrate. Figures 4a 
and 4b display the surface and deep ocean tempera-
ture anomalies, computed as the difference of the 
forced and control simulations, while Fig. 4c shows 

the absolute temperatures of the deep ocean in the 
control simulations to indicate the model spread in 
the base state. Previous work on long-term trends in 
deep ocean temperature and salinity shows that these 
trends may reflect ongoing changes in stratification 
and the strength and depth of the Atlantic meridional 
overturning circulation (AMOC; e.g., Stouffer and 
Manabe 2003; Rugenstein et al. 2016a; Marzocchi 
and Jansen 2017; Jansen et al. 2018). Even if the energy 
flux imbalance at the TOA or the ocean surface are 
close to a new steady state this does not necessarily 
indicate that the deep ocean is equilibrated as well 
(Zhang et al. 2013; Hobbs et al. 2016; Marzocchi and 
Jansen 2017). Reaching deep ocean equilibration may 
not be necessary for studies concerned with surface 
properties only. However, for interpretation of paleo 
proxies and comparison with model simulations, 
distinguishing between the transient and equilib-
rium response in the intermediate or deep ocean is 
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necessary (Zhang et al. 2013; Marzocchi and Jansen 
2017; Rind et al. 2018; Jansen et al. 2018).

Evolution of surface temperature and cloud radiative 
effect. The evolution of large-scale surface air tem-
perature patterns on decadal to millennial time scales 
(Fig. 5) is robust among models and different forcing 
levels. The simulations show a strong land–sea warm-
ing contrast on short time scales and little warming 
over the Southern Ocean on decadal to centennial 
time scales (e.g., Manabe et al. 1991; Gregory 2000; 
Joshi and Gregory 2008; Geoffroy and Saint-Martin 
2014; Armour et al. 2016). A warming pattern 
reminiscent of the positive phase of ENSO and the 
interdecadal Pacific oscillation occurs throughout 
the Pacific basin (Fig. 5b; Held et al. 2010; Song and 
Zhang 2014; Andrews et al. 2015; Luo et al. 2017) 
but decays on centennial to millennial time scales 
(Figs. 5c,d), with a large model spread in time scales 
(not shown). As it approaches equilibrium, the tem-
perature pattern becomes more homogeneous, the 

land–sea warming contrast decreases (e.g., Held 
et al. 2010; Geoffroy and Saint-Martin 2014), and the 
Southern Hemisphere high latitudes keep warming 
beyond year 1000. As in previous studies, the AMOC 
first declines (Gregory et al. 2005; Zhu et al. 2015; 
Kostov et al. 2014; Trossman et al. 2016) and then 
recovers (Stouffer and Manabe 2003; Li et al. 2013; 
Zickfeld et al. 2013; Rugenstein et al. 2016a; Rind et al. 
2018), resulting in a delayed warming in the North 
Atlantic. Figures 5a, 5b, and 5e correspond to the 
blue shading in Fig. 1, and are known from CMIP5 
simulations (e.g., Andrews et al. 2015), while Figs. 5c, 
5d, 5f, and 5g highlight that the simulations still warm 
substantially on centennial to millennial time scales, 
mainly in areas with more sensitive (i.e., positive or 
small negative) feedbacks (Rugenstein et al. 2019).

Normalizing the zonal-mean temperature anom-
aly by the global-mean warming reveals the relative 
zonal-mean warming (Fig. 6). Arctic amplification 
begins very early in the simulations and warming 
throughout the Southern Hemisphere is lower than 

Fig. 3. TOA global- and annual-mean radiative imbalance of all control simulations. Note the different lengths 
of the horizontal axes. The gray line indicates the average and the red line the linear trend, except for CCSM3II 
and GFDLCM3, for which both colors depict a fourth-order polynomial fit.
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the global average in almost all models for the first 
centuries. Between year 100 and 1000 the Southern 
Hemisphere warms more than the Northern Hemi-
sphere in all latitudes poleward from 30°, in some 
regions by more than 4 K (Fig. 5f). Antarctic warm-
ing slowly increases, but is still substantially less 
than Arctic amplification (e.g., Salzmann 2017). In 
a couple of models, the amplitude of Antarctic and 
Arctic amplification is the same after 4,000 years of 
model integration time (GISSE2R and ECHAM5; 
Li et al. 2013), while in other models the Antarctic 
amplification stays substantially smaller, though 
still increasing after a couple of thousand years. 
LongRunMIP shows that there is no reduction in 
model spread in the polar regions through time and 
that although all models follow a similar large-scale 
pattern evolution (Fig. 5), the local response time 
scales, for example, in the North Atlantic, Southern 
Ocean, or equatorial Pacific differ by hundreds to 
thousands years.

While the large-scale temperature response is 
rather robust between models and simulations, 
the cloud radiative effect (CRE) differs strongly in 
magnitude and time evolution, both between mod-
els and between forcing levels for the same model 
(Fig. 7). We show the shortwave CRE—computed 
as the difference between “all sky” and “clear sky” 
shortwave radiative f luxes (e.g., Ramanathan et al. 
1989; Ceppi et al. 2017)—as a function of surface air 
temperature anomaly. The models disagree in the 
overall sign, as expected from CMIP5 models on 
shorter time scales (e.g., Vial et al. 2013; Caldwell 
et al. 2016), but can even change sign within a single 
simulation (e.g., ECEARTH or CESM abrupt8x). 
The strength of variation in time within one simu-
lation can depend strongly on the forcing level (e.g., 
MIROC32 1pct2x vs 1pct4x) and the time scales of 
change differ between the models (e.g., IPSLCM5R 
vs MPIESM12 abrupt4x). For some simulations, the 
cloud response barely changes with temperature, 

Fig. 4. Global- and annual-mean temperature anomalies (experiment minus average of the control simulation) 
of the (a) surface ocean (first layer) and (b) deep ocean, as well as (c) absolute values of deep ocean temperature 
in the control simulations, for abrup4x (solid) and 1pct4x (dashed) simulations. “Deep ocean” means around 
2-km depth (closest level). Note that the time scale in (c) is shorter than in (a) and (b).
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Fig. 5. Time evolution of the surface air temperature anomaly in the abrupt4x simulations. Models means in-
clude (a)–(c),(e),(f) CCSM3, CESM104, CNRMCM61, ECHAM5, GISSE2R, HadCM3L, HadGEM2, IPSLCM5A, 
MPIESM11, and MPIESM12 and (d),(g) only CESM104, GISSE2R, and MPIESM11  because of the length of these 
contributions. See Table 2 for details of the length of each simulation.

contributing negligibly to the overall feedback (e.g., 
MPIESM12 abrupt16x, CESM104 abrupt4x, and 
MIROC32 1pct2x).

DISCUSSION AND OUTLOOK. Published 
millennial-length simulations. Models of intermediate 
complexity are the most common tools used to study 
century to millennium time scales in the climate 
system (e.g., Zickfeld et al. 2013; Eby et al. 2013; 

Levermann et al. 2013; Rugenstein et al. 2016c; Jan-
sen et al. 2018). However, they usually have a poorly 
resolved atmosphere and little or no representation 
of cloud processes. In contrast, the publications in 
Table 3 feature millennium-length AOGCM simu-
lations. These papers provide a solid body of work 
on millennial-length climate simulations, but rarely 
use the same forcing levels and simulation length and 
focus on different aspects of the climate system. Three 
papers compare model formulation and processes of 
two AOGCMs each (Frölicher et al. 2014; Paynter 
et al. 2018; Krasting et al. 2018), but otherwise mod-
els have not been systematically compared against 
each other. Figures 4 and 7 show that AOGCMs can 
strongly differ in their behavior. Spatial patterns of, 
for example, precipitation and surface heat f luxes 
also vary strongly between models and between 
different forcing scenarios for the same model (not 
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Fig. 6. Time evolution of the zonal-mean surface air temperature response normalized by the global-mean 
temperature anomaly. (a)–(d) Values above (below) 1 mean that warming is amplified (reduced) relative to the 
global-mean warming. (e)–(g) The differences (note the different scale). The plots in (a), (b), (e), and (f) contain 
only abrupt4x simulations, while the plots in (c), (d), and (g) also contain the 1pct2x and RCP8.5+ simulations 
with integration lengths longer than 4,000 years. Table 2 lists all simulations and model long names.

shown), suggesting that some mechanisms and 
processes discussed in the published literature are 
not generalizable across models. For example, there 
is disagreement about which regions are thought to 

dominate the changing feedback parameter (Senior 
and Mitchell 2000; Andrews et al. 2015; Meraner 
et al. 2013; Caballero and Huber 2013) or whether or 
not, and on which time scales, the AMOC recovers 
from its initial reduction (Voss and Mikolajewicz 
2001; Stouffer and Manabe 2003; Li et al. 2013; Rind 
et al. 2018; Thomas and Fedorov 2019). Paleoclimate 
simulations are often several thousand years long; 
however, they usually include boundary conditions 
such as ice sheets or changing continental configura-
tions, which differ from the ones used here. However, 
paleoclimate studies often discuss equilibration time 
scales and deep ocean temperature trends relevant to 
the types of models included in LongRunMIP (e.g., 
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Brandefelt and Otto-Bliesner 2009; Zhang et al. 2013; 
Klockmann et al. 2016; Marzocchi and Jansen 2017; 
Gottschalk et al. 2019).

Limitations. LongRunMIP analyses are currently 
limited mainly by the collected variables (Table 1). 
Including cloud fields and 3D atmospheric tempera-
ture and humidity fields, for example, would allow 
users to study atmospheric dynamics and radiative 
feedbacks in more detail. The different forcing sce-
narios of model contributions to LongRunMIP are 
both a strength and weakness. Minimal requirements 
have encouraged a large number of contributions 
so far. However, studying a single forcing scenario 
requires model selection or scaling between different 
forcing levels. Slab-ocean simulations, which replace 
a model’s dynamical ocean with a much shallower 
nondynamical mixed layer, are a computationally 
cheap tool to compare fast and slow time scales and 
the relevance of surface warming patterns (Boer and 
Yu 2003c; Danabasoglu and Gent 2009; Li et al. 2013). 
We hope to receive submissions of these simulations 

in the future, to allow analysis of their utility. Century 
to millennial time scales in the real world include 
more processes and Earth system feedbacks than are 
included in LongRunMIP simulations, such as the 
carbon cycle, vegetation feedbacks, forcing agents 
other than CO2 (such as other greenhouse gases or 
aerosols), ice sheets, glacial rebound effects, changes 
to continental configuration, and orbital variation. 
Further, the real climate system is never in equilibri-
um or steady state, because the forcing continuously 
changes (e.g., Köhler et al. 2017). These Earth system 
feedbacks and additional forcings must be taken into 
account when comparing the LongRunMIP models 
with paleo proxies or when projecting or predicting 
changes in future centuries or millennia.

Summary and expected impact. LongRunMIP is the 
first archive of millennial-length simulations of 
complex climate models, featuring 50 simulations 
of 15 models by 10 modeling centers under various 
forcing scenarios (Table 2). The archive provides an 
unprecedented opportunity to study the equilibrium 

Fig. 7. Simulated shortwave cloud radiative effects (SW CRE) for different levels of global surface air tempera-
ture changes. Each point is a 10-yr running average. Note the different axes values, which cover a large range 
in TOA imbalance and surface temperature. Table 2 lists all simulations and model long names.
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Table 3. Published millennial-length simulations.

Paper Model
Forcing 

level
Length 

(yr) Content/scientific comment

Senior and Mitchell (2000) HadCM2 2×CO2 ≈800

Included flux adjustments; effective climate 
sensitivity increases due to SW CRE due to 
changes in the interhemispheric tempera-
ture gradient

Bi et al. (2001) CSIRO 3×CO2 ≈1,000
Cessation and recovery of Antarctic Bottom 
Water and North Atlantic Deep Water 
formation

Voss and Mikolajewicz (2001) ECHAM3 2×, 4×CO2 850
Adjustment time scales, committed warming, 
ocean thermohaline circulation

Stouffer and Manabe (1999, 2003) GFDL
0.5×, 2×, 
4×CO2

4,000
Thermohaline circulation and paleo-oceano-
graphic implications

Boer and Yu (2003a,b,c) CCCma
Twenty-first 

century
1,000

Radiative feedbacks and surface warming; 
effective climate sensitivity decreases with 
time; slab vs fully coupled models

Gregory et al. (2004) HadCM3 2×CO2 ≈1,000

TOA radiative imbalance and surface tem-
perature are not linearly related; after 1,000 
years the model is still 0.7 W m–2 away from 
equilibrium

Danabasoglu and Gent (2009)* CCSM3
2×, 4×, 
8×CO2

3,000

Comparing slab and fully coupled models; 
determining ECS; Jonko et al. (2013) analyzed 
the contributions of different feedbacks to 
doublings of CO2

Gillett et al. (2011) CanESM1
Twenty-first 

century
≈1,000 Impact of reduced emissions

Li et al. (2013)*
ECHAM5/
MPI-OM

2×CO2 ≈6,000

Comparing slab and fully coupled models; 
determining ECS; adjustment time scales of 
surface warming patterns, ocean heat uptake, 
and sea level rise

Frölicher et al. (2014) and 
Frölicher and Paynter (2015)

GFDL-ESM2M, 
CSM1

4×CO2 
pulse

1,000
Climate impact of CO2 emission stoppage; 
evolving feedbacks; ECS; transient climate 
response to cumulative carbon emissions

Andrews et al. (2015)* HadGEM2-ES 4×CO2 ≈1,300
Nonconstancy of feedbacks; variations of 
TOA components cancel each other on the 
century to millennial time scale

Yamamoto et al. (2015)* and 
Yoshimori et al. (2016)

MIROC3.2 2×, 4×CO2 2,000

Deep ocean ventilation overall increases 
oxygenation after a transient decrease; re-
view article on ocean heat uptake in coupled 
models and energy balance models

Cao et al. (2016)* HadCM3L
2×, 4×, 6×, 

8×CO2

1,000
Comparing CO2 to other forcing agents and 
geoengineering scenarios

Rugenstein et al. (2016a,b)* CESM104
2×, 4×, 
8×CO2

≈1,300
Dependence of global and regional radiative 
feedback evolution on surface heat flux pat-
terns; forcing adjustment

Paynter et al. (2018)*
GFDL-ESM2M, 

GFDL CM3
2×CO2 ≈5,000

Evolution of global and regional radiative 
feedbacks and the role of atmospheric verti-
cal velocity fields and inversion strengths

Rind et al. (2018)* GISS-E2-R 4×CO2 ≈2,000
AMOC reduction and recovery on North 
Atlantic surface flux conditions

Krasting et al. (2018)
GFDL-ESM2Mb, 
GFDL-ESM2G

4×CO2 5,000
Ocean heat uptake, model formulation of dia-
pycnal diffusivity and ocean vertical coordinates

* Contribution to LongRunMIP.
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response of a large number of models to forcing. The 
variables included allow study of a range of phenom-
ena associated with the atmosphere, ocean, land, 
and sea ice (Table 1), and we expect LongRunMIP to 
contribute to current discussions laid out in the first 
section. This includes ocean heat uptake, sea level 
rise, ocean circulation response to warming, large-
scale modes of variability, sea ice reduction, polar 
amplification, precipitation variability, atmospheric 
dynamics, long-term memory in time series, spatial 
warming patterns, ocean–atmosphere interactions, 
model spinup techniques, the relation of internal vari-
ability and forced response under different forcing 
levels, committed climate response, and the relation 
of time and state dependence of fast feedbacks and 
Earth system feedbacks and processes.

LongRunMIP is a MIP of opportunity, without 
an agreed-upon protocol, and is a result of the will-
ingness of individual research groups to provide 
model output from simulations often conducted over 
years of real-world time. As a result, the experiments 
are not standardized, but most models provided a 
millennial-length simulation that begins with an 
abrupt quadrupling of CO2 concentration. In ad-
dition to collecting simulations, we provide output 
with standardized formats and variable names, and 
include versions regridded to a common grid, as well 
as global averages.

LongRunMIP builds upon a body of pioneering 
studies that looked at the behavior of models beyond 
the centennial scale (Table 3), LongRunMIP allows 
this sort of analysis to be applied across a diverse 
group of models that exhibit strikingly different 
behavior (Fig. 7), and hopefully encourages others 
to look beyond the limitations and assumptions 
normally imposed by computational constraints, to 
directly study the equilibration of the fully coupled 
atmosphere–ocean system.

Data access and sharing. LongRunMIP currently con-
sists of 15 TB of data and are available for download 
(https://data.iac.ethz.ch/longrunmip/). Fields shown 
in this paper can be accessed online (https://data.iac 
.ethz.ch/longrunmip/BAMS/). See www.longrunmip 
.org for more details on available variables, contact 
information, sample figures and videos (see sup-
plemental material), and links to join a discussion 
community. We will be collecting more simulations 
over the next couple of years.
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